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In their recent paper [Phys. Rev. E 79, 031115 (2009)], Ning Jia and Shoufeng Ma used some Markov chain
arguments for the analytical description of inflow in the deterministic Nagel-Schreckenberg model with open
boundaries. In this context, they considered two different mechanisms of injecting vehicles: the standard
injection rule and a popular expanded injection rule. While the results for the first one seem to be correct,
simulations show that the inflow formula in case of the expanded injection rule yields only approximate results.
Therefore, this comment provides the exact formula also in this case and explains the shortcoming in the

derivation of Jia and Ma.
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As Jia and Ma wrote [1], cellular automata play an im-
portant role in traffic modeling. In this context, the Nagel-
Schreckenberg (NS) model [2] is one of the most popular
models. Originally developed for the description of freeway
traffic, nowadays it is used for modeling urban traffic as well
[3]. Typically, it consists of an one-dimensional lattice with L
sites (numbered from 1 to L from the left to the right) where
each site can either be empty or occupied by a single vehicle.
The dynamics are described by three rules which are applied
to all vehicles simultaneously at each time step:

vi(t+ %) = min{vi(t) + 1’xi+l(t) - xi(t) - l,vmax}’ (1)

max{vi(t+ %) - 1,0} with prob. p

Ul'(t+l)= U(t+l)
i 2

(2)

else,

x(t+1)=x;(t) +vi(t +1). (3)

Here, x,(r) and v,(¢) are position and speed of the ith vehicle
at time 7. The other parameters are the maximum velocity
Umax (sites per time step) and the so-called slowdown prob-
ability p which causes typical stochastic fluctuations in traf-
fic flow and makes the model more realistic. However, it also
makes the analytical investigation of the model much more
complex. Because of that, this comment as well as the anno-
tated paper [1] focus on the deterministic case where p=0.

Nevertheless, even in the deterministic situation, there are
still very interesting phenomena such as phase transitions
between free flow and jammed traffic, especially when open
boundaries are considered. Furthermore, the density profiles
on the lattice are strongly affected by inflow and outflow in
this case, too [4,5]. Recently, also the effect of traffic light
boundary conditions as a special variant of open boundaries
was considered [6,7]. As a result, the generic structure of
traffic light queues could be analyzed.

However, in all of these cases, it is crucial to know about
the exact inflow which vitally depends on both the injection
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rate o as well as on the used inflow mechanism. The most
common injection rules in this context are the standard in-
jection rule and the expanded injection rule as proposed in
[8]. Both are considered in the annotated paper [1].

There, the standard injection rule for each time step is
defined as follows [1]: “with probability « a car with veloc-
ity U=V, 1s created at site O; this car immediately moves
according to the NS rules [i.e., rules (1)—(3)]. If site 1 is
occupied by another car, the injected car is deleted.”

This injection rule however (cf. [1]) gives rise to some
curious inflow behavior which is due to “injection-produced
slowdown” (IPSD). Especially, inflow is not necessarily a
monotone increasing function of the injection rate « in this
case. However, if the left boundary is expanded to a mini-
system consisting of v,+1 sites (see [1,8]), the effect of
IPSD can be eliminated and the state of maximum flow can
be reached which typically is not possible in case of the
standard injection rule. Consequently, the expanded injection
rule has become very popular during the last years.

In detail, it is defined as follows [8]: “the allocation of the
minisystem (left boundary) has to be updated every time step
before the vehicles of the complete system. The update pro-
cedure consists of two steps. If one cell of the minisystem is
occupied, it has to be emptied first. Then a vehicle with
initial velocity v, is inserted with probability g;, [i.e., «].
Its position has to satisfy the following conditions: (i) the
headway to the first car in the main system is at least equal to
the maximum velocity v,,,, and (ii) the distance to the main
system has to be minimal, i.e., if no vehicle is present in the
main system within the first v,,, cells, the first cell of the
boundary is occupied.”

Assuming that vehicles are always entering free-flow traf-
fic, now it is interesting to know about the exact inflow
QOin(@) given injection rate @ and maximum velocity v .
This is not trivial since vehicles may be hindered to be in-
serted in some special situations which are generated by the
stochastics of the inflow process. Especially, one gets
QOin(a@) # a for all >0 and v, € N\.

In [1], some formulas for Q,,(«) are presented in case of
the standard injection rule as well as for the expanded injec-
tion rule. In this context, the results for the standard injection
rule agree with simulations very well as shown in several
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FIG. 1. (Color online) Comparison between simulation results
(X) and inflow formula (4) [solid line (blue)] in case of v, =2 for
the expanded injection rule.

figures in the same paper [1]. Furthermore, for the expanded
injection rule, the paper yields the same formula as presented
by Barlovic et al. [8] but using a different technique for the
derivation:

— av maxt 1

Onla) =" . )

- avmax

Unfortunately, this expression is just approximately correct
as recent simulations showed (see Fig. 1).

Seemingly, in both derivations [1,8], the implicit assump-
tion is unintendedly brought in that the further injection
behavior does not depend on whether the minisystem at the
left boundary is empty or whether its rightmost site is occu-
pied after the injection phase of a given time step. In fact, of
course, there is a difference between these two cases (cf. Fig.
2).

For example, let there be a vehicle to be injected. Then, if
the rightmost site of the minisystem is occupied after the
previous injection phase [cf. Fig. 2(a)], the vehicle at this site
first moves to site 2v,,,,+1 and thus the new vehicle has to
be injected at site v,,,,. If, however, the minisystem is empty
after the previous injection phase, i.e., no car has been in-
jected at the previous time step and no car has been injected
at site 1 two time steps before [cf. Fig. 2(b)], then the left-
most car will be located on site 2v,,,,+2 or to the right of
this at the beginning of the current injection phase. Hence, of
course, the new vehicle is inserted at site v+ 1.
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FIG. 2. Difference concerning inflow behavior in case of an
empty and nonempty minisystem (v,,,=2, system after injection
phase, new vehicles indicated by circles).
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FIG. 3. Transition graph of the Markov chain representing the
complete inflow process (based on [9]).

Nevertheless, the Markov chain approach presented in [1]
can be adopted also without the above assumption. For this
purpose, the transition graph of the Markov chain represent-
ing the inflow process has to be just slightly modified (cf.
[9D).

For, let S:={0,1,...,vm,+1} be the state space of this
modified Markov chain. Then, state 0 describes the situation
where the whole minisystem at the left boundary is empty
after the injection phase (before updating the complete
system). Furthermore, similar to [1], the other states
1,...,uma+1 each represent that the corresponding site of
the minisystem is occupied by a vehicle at the end of the
injection phase. Of course, this vehicle may have been in-
jected at any time step before as is possible in case of state
Upax+ 1

Finally, the corresponding transition graph looks like in
Fig. 3 (see also [9]). Obviously, it is very similar to the
related transition graph constructed by Jia and Ma except for
the additional state O which replaces the state v,,,+1 in a
certain way (cf. [1]).

As can be seen easily from Fig. 3, the modified Markov
chain is ergodic for all @ € (0, 1). Hence, there is an equilib-
rium distribution P:=(py,...,p, i) with stationary prob-
abilities p; for the states i=0,1,...,v,+1. It can directly
be obtained by solving the linear equation

P=PT (5)

with E;’;gf"”p,: 1, where T is the one-step transition matrix
of the considered Markov chain.

Then, as mentioned in [1] (see also [9]), the correct inflow
can be computed by

Oin(@) =a(l-py). (6)
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FIG. 4. (Color online) Comparison between simulation results
(%) and inflow formulas (4) [middle line (blue)] and (8) [upper line
(red)] in case of vy, =1 for the expanded injection rule. The lower
line (green) shows the difference between both formulas.
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FIG. 5. (Color online) Comparison between simulation results
(X) and inflow formulas (4) [middle line (blue)] and (8) [upper line
(red)] in case of v, =2 for the expanded injection rule. The lower
line (green) shows the difference between both formulas.

Hence, only the stationary probability p; of state 1 is needed
which is given by (see [9] for details)

a’maxtl(] — @)
P1= 1 2 (7)

- 1 — aVmax 4+ gVmaxt! — fPmax

Inserting this into Eq. (6) finally yields the correct inflow
expression

a(l — a’mx)
+1

Qin(a) = 1— 42 (8)

a¥max 4 gVmaxt!t _ pUmax

Simulations show Eq. (8) to be exact. Figures 4 and 5 depict
the results in comparison to the formula [see Eq. (4)] pro-

PHYSICAL REVIEW E 80, 013101 (2009)

Q e
\

0 0.2 0.4 0.6 0.8 1
o

FIG. 6. (Color online) Comparison between inflow formulas (4)
[middle line (blue)] and (8) [upper line (red)] in case of v,=5 for
the expanded injection rule. The lower line (green) shows the dif-
ference between both formulas.

posed in [1]. Accordingly, the difference between both ana-
lytical expressions of inflow can be seen, too.

However, the deviation between formulas (4) and (8) be-
comes smaller and smaller as v,,, increases (cf. Fig. 6).
Moreover, both expressions approach the identity function
O (@)=a as vy, — . Since the error is very small already
at vy, =5 (see Fig. 6), this might be the reason why it has
not been recognized before that formula (4) is not exact. Vice
versa, the maximum deviation appears when v, =1. Based
on some standard algebra, it can be found that this maximum
difference happens at a=0.543 689 with AQ;,=~0.067 442
in this case (cf. Fig. 4).
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